
XDebug Support In PDT 1.0
Version: 2.01
Dave Kelsey

Latest Revision: 2 October 2007

This document provides an overview of the features and idiosyncrasies of
XDebug support in PDT (PHP Developer Toolkit)

1 Contents
1 Contents .. 2
2 XDebug Support User Guide ... 3

2.1 Determining the correct INI file to update .. 3
2.2 Required configuration of XDebug .. 3
2.3 Configuring XDebug support in PDT ... 6

2.3.1 Testing your setup. .. 8
2.4 Debugging using XDebug ... 9

2.4.1 Web Launch .. 10
2.5 Breakpoint support .. 14

2.5.1 Conditional Breakpoint support .. 15
2.6 The debug views ... 17

2.6.1 Hover ... 18
2.6.2 Expression view ... 18

2.7 Known issues .. 19
2.8 Tips ... 20

2.8.1 Launch waiting for debug session ... 20

Page 2 of 20

2 XDebug Support User Guide
The following versions of XDebug are currently supported

• Official 2.0.0 release
XDebug is available from PECL or http://www.xdebug.org, prebuilt windows
binaries are available and you need to select the appropriate version for the level
of PHP you are running. For Linux, you will need to download the source and
build it yourself. The instructions for this are on http://www.xdebug.org .
This website also provides loads of information about setting up xdebug and
issues with xdebug itself, please visit the website for more information.

2.1 Determining the correct INI file to update
For EXE launches, PDT will take a copy of the INI file stored in the same
directory as the PHP executable, create a copy and will use that copy. Make sure
that you add your Xdebug information to this INI file for launches.
For Web launches, you need to modify the INI file that is used by the version of
PHP that is executed by your web browser. You can determine this file by
invoking a simple script with the following contents
<?php
phpinfo()
?>

and look at the output, specifically the line
Configuration File (php.ini) Path => C:\WINDOWS\php.ini

Which indicates the ini file being used.

2.2 Required configuration of XDebug
The following minimal configuration is required for XDebug in your PHP.INI file if
you are using the thread safe, non debug version of PHP (This is the default
build for the windows binary version on PHP.net).
[xdebug]
xdebug.remote_enable=1
xdebug.remote_host=<hostname>
xdebug.remote_port=<port>
xdebug.remote_handler="dbgp"
zend_extension_ts=<xdebug library location>

Where

• <hostname> is the name of the host where your IDE will be running

• <port> is the port you have configured your IDE to listen on (9000 is the
default)

An example set of entries may look like
[xdebug]

Page 3 of 20

../../../www.xdebug.org/default.htm
../../../www.xdebug.org/default.htm

xdebug.remote_enable=1
xdebug.remote_host="localhost"
xdebug.remote_port=9000
xdebug.remote_handler="dbgp"
zend_extension_ts="C:\php\php_xdebug-2.0.0-5.2.2.dll"

Ensure you place your entries at the bottom of your ini file or XDebug could fail to
load.
You may need to change the “zend_extension_ts” to “zend_extension” if you are
using the non thread safe version of PHP or to “zend_extension_debug” if you
are using the debug version.
To determine if Xdebug has been located successfully, you can either

• launch PHP with the –m option to list the loaded modules

• launch PHP with the –i option to output definition information

• run a PHP script which calls the “phpinfo()” function.

With the –m option you should get something like
[PHP Modules]
bcmath
calendar
...
...

[Zend Modules]
Xdebug

With the –i option and phpinfo you should be looking for the following entries
This program makes use of the Zend Scripting Language Engine:
Zend Engine v2.1.0, Copyright (c) 1998-2006 Zend Technologies
 with Xdebug v2.0.0, Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, by Der
ick Rethans

As well as information about the XDebug extension and its configuration settings.
xdebug

xdebug support => enabled
Version => 2.0.0

Supported protocols => Revision
DBGp - Common DeBuGger Protocol => $Revision: 1.125 $
GDB - GNU Debugger protocol => $Revision: 1.87 $
PHP3 - PHP 3 Debugger protocol => $Revision: 1.22 $
…
…

Page 4 of 20

If you don’t get this and you are sure the path is correct then you need to make
sure you have the correct entry for zend_extension in your PHP.INI file. When
you do PHP –i or run a script with phpinfo() in it you need to look for 2 entries
Debug Build => no
Thread Safety => enabled

The above output shows a non debug build that has thread safety so you should
use “zend_extension_ts”.
If thread safety was “disabled” then you should have the php.ini entry of
zend_extension=<xdebug library location>

if it was a debug build you need to have the entry
zend_extension_debug=<xdebug library location>

If you are running a thread safe debug version of PHP, then your ini entry must
be of the form
zend_extension_debug_ts=<xdebug library location>

In summary the rule is (in the stated order)
1. start with “zend_extension”
2. if you have a debug build: Debug Build => yes , add “_debug”

3. if you have thread safety: Thread Safety => enabled , add “_ts”

Page 5 of 20

2.3 Configuring XDebug support in PDT
PDT has a preference page for debug which allows you to configure various
aspects of the debug environment. These options are also available on a project
specific basis. An example of this dialog is shown here.

Currently the XDebug support doesn’t make use of “Debug Transfer Encoding” or
“Debug Output Encoding”. You should change the “PHP Debugger” option to
XDebug to ensure that XDebug is selected as the default debugger.
Port 9000 is the default for XDebug, but it will depend on how you have
configured XDebug in PHP.INI
There are some specific XDebug options as well, to change these select
“XDebug” in the “Installed Debuggers” panel and press the Configure button.

Page 6 of 20

Item Description
Debug port Corresponds to the value you specified

for “xdebug.remote_port” in PHP.INI

Show super globals in variable view Display the super globals in the variable
view when debugging

Max array depth Defines how much data is retrieved on s
ingle request for nested arrays. This
doesn’t restrict the depth that can be
displayed, just how much information is
retrieved per request to XDebug.

Page 7 of 20

In the “Launching” subsection of the debug preferences, XDebug doesn’t support
the “Allow multiple debug sessions” options.

2.3.1 Testing your setup.
It is highly recommended that you do a debug EXE and/or Web launch of a script
containing
<?php
phpinfo()
?>

and review the output to see if xdebug is loaded correctly as described in section
2.2.

Page 8 of 20

2.4 Debugging using XDebug
If you plan on debugging standalone scripts, you will need to define a PHP
Executable location. In preferences, select PHP Executables and press the
Add… button to get the following dialog

Ensure you have selected the PHP debugger as XDebug and define the path to
where you have PHP with XDebug setup.
Debugging a PHP script or Web Page works in the same way no matter which
debugger you have selected. When using the pop-up menu “Debug As” ensure
you have set XDebug as the PHP Debugger either in preferences on specifically
on the project to ensure XDebug is used.

Page 9 of 20

2.4.1 Web Launch
The simplest way to debug web PHP scripts is to have a local web server on your
machine and set up it up so that its Document Root points to your workspace or a
project under your workspace in PDT as the location of your PHP Scripts. For
example if your workspace was at
C:\development\Phase1
Then you could start Apache as follows

Apache.exe -c "DocumentRoot "C:\development\Phase1""
Note the quotes and ensure you don’t have any unnecessary white space.
Defining your document root at the workspace level will mean you cannot use the
facility to automatically generate the URL, you will need to enter the project
where the initial script is, in the example below the URL has had the text
“SimpleLogin” added by hand.

If you define your document root at the project level, for example
C:\development\Phase1\SimpleLogin
Then you can use the Auto Generate facility. The URL path will be correct.

Page 10 of 20

In this scenario, you can choose to untick the “Auto Generate” URL to define it
yourself, and the contents of “File / Project” have no effect on debugging (ie the
contents can be any php file or php project).

2.4.1.1 Path Mapping
If you cannot setup a webserver on your local machine and have to debug a
remote server, then that is still possible to do this, but this requires path mapping.
The concept of path mapping is to try to match the script executing on the server
with the script stored in your PDT workspace. The scripts in the PDT workspace
must be identical to those stored on the server and also the directory structure
must also be the same. XDebug needs to know the fully qualified name of the file
to place the breakpoints on, but the breakpoints are placed on the files in PDT
which are not the same files so a remapping must occur.
In order to work out this mapping, the “File / Project” must contain the file in the
PDT workspace that is a copy of the initial script that will be executed when the
launch URL is invoked.
In the above example, the URL “http://localhost:8080/SimpleLogin/index.php”
invokes the script c:\htdocs\SimpleLogin\index.php, the workspace is located at
d:\pdt-workspace, so the information in “File / Project” refers to file d:\pdt-
workspace\SimpleLogin\index.php

2.4.1.2 Debugging the web script
The application is driven through a web browser. The type of browser and
whether it is internal (ie a view inside of eclipse) is defined under the Window
Preferences in the “Web Browser” entry under “General” Section.
If you have problems trying to get the internal view to work, then you can change
to using an external browser.
As your application is driven through a web browser and XDebug works by
saving a persistent cookie to your web browser to ensure that multiple requests
and redirections/links to other scripts still continue to be debugged, you can only
ever have a single Web launch active at any one time.
When a debug session is waiting for the next request to be processed and be
debugged your Debug window will look like this

Page 11 of 20

../../../localhost_3A8080/SimpleLogin/index.php

When debugging a script you should see something like this in the debug window

Whenever a request completes, the Web launch debug will remain active waiting
for the next request to be debugged until you explicitly stop the debug session by
terminating it, ie by selecting either the PHP Web script launch, the “Remote
Launch” child entry, or the “PHP Thread” child entry and press the red button.

Page 12 of 20

2.4.1.3 Disconnect
You can disconnect a web launch at any time by selecting either “PHP
Application” or the higher level parent which is the name of the launch
configuration itself (In the example below it is “Guessing Web”).

When you disconnect from a web launch, the web launch remains active but
stops the script that is currently being executed by your web server. Your
browser will still have the XDebug cookie registered which means if you go to
that browser press enter or return back to the original launch URL, you should
still be in debug mode and eclipse will receive a new debug session initiation.
This is different to terminate which will stop the script from running, but also send
the stop URL to remove the XDebug cookie from the browser (and thus stop
xdebug from debugging further from that browser) and it also terminates the web
launch.

Page 13 of 20

2.5 Breakpoint support
Breakpoints work in a similar manner to other IDEs and languages. It is best to
add breakpoints before you run your script or web application or add new break
points when your script is suspended due to a break point or you are stepping
through code.
Break points added to a file while a script is not running will not be noticed until
your script suspends due to an already existing break point. In other words if you
are blocked in your script (for example a blocking function call such as fgets) or
you are in a long loop, any break points you add will not be honoured. So you
cannot for example attempt to stop a script from running a long loop by putting a
breakpoint on a line within that loop.
Any break point added to a file while a script is actively running (in the case of a
Web launch this will be while the request is running) and not suspended, are
deferred until the script is suspended. If the script ends or the request ends then
the breakpoints will be installed before the script is run or another request is
processed.

Page 14 of 20

2.5.1 Conditional Breakpoint support
There are 2 types of conditional breakpoints supported

• Hit counts

• Expression evaluation
You set a condition of a breakpoint by bringing up the popup menu for an existing
breakpoint and selecting “Breakpoint properties…”. This will bring up a dialog box

Where you can set the condition

Page 15 of 20

2.5.1.1 Hit counts
You can control when a breakpoint will suspend a script based on the number of
times the line where the breakpoint is set is executed. There are 3 types of hit
count you can specify

expression Behaviour
hit(== x) Suspend when you execute this line for the ‘x’th time only

hit(>=x) Suspend when you execute this line after but including the ‘x’th
time

hit(%x) Suspend when you execute this line every ‘x’th time

So for example if you want a script to suspend every 10th time a specific line is
executed, you would enter into the condition box

hit(%10)

2.5.1.2 Expression evaluation
This allows you to control when a breakpoint will suspend a script when an
expression evaluates to true. So for example when a counter variable exceeds a
given number, you may wish to have the script suspend. An example of the
expression you would enter into the condition box is

$counter >= 20

Page 16 of 20

2.6 The debug views
Apart from the source file, the other important views while debugging are the
Stack frames and the variables view. Only when the script or request is
suspended will these views display anything.
Variables are only visible at a certain stack level so when you select a different
stack level of your suspended script you will see the list of variables change.
Some variables will be common such as globals and super globals (if you have
chosen to have super globals be shown in the variables view)
The following shows executing scripts, which include their stack frames

The list of variables and their values exposed for the selected stack frame

Page 17 of 20

2.6.1 Hover
While suspended you can select an entry in the stack frame and it will show you
the file and highlight the line it is at (so long as the file is part of your workspace).
You can place your mouse over variables and if they are within scope the
contents of that variable will be highlighted

2.6.2 Expression view
You can also create expressions in the expression window which will be
evaluated and displayed whenever your script or request is suspended.

One quick way to add a variable to the expressions window is through the watch
pop up menu item. To do this highlight a variable (include the $), you can do this
by double clicking the variable, bring up the pop up menu and select “watch”

Page 18 of 20

2.7 Known issues
• Currently it is not possible to change the type of a variable when you

change its contents. For example you cannot change a boolean to a string
or an integer/float to a string. You can change a string to a number and
you can interchange between integers and floats

• Linked files will not be found by the debugger

• Do not attempt to enter watch expressions that invoke methods. There
seems to be a bug in xdebug 2.0.0 that causes the script to terminate.

Page 19 of 20

2.8 Tips

2.8.1 Launch waiting for debug session
You have done a launch but you find that you aren’t debugging and the launch
status window shows that the application is still launching. You can still interact
with the script but you cannot debug. This can occur when

• An PHP script launch or PHP Web Page launch is done but you either
have no XDebug information defined in your INI file or the XDebug
information doesn’t contain the correct Server, Port or debug protocol.

• An PHP script launch produces a firewall pop-up which you deny

• A PHP Web Page launch but either the web server is not running or the
defined URL in the launch is incorrect

You will see the following at the bottom right of your IDE. You can click on the
very right icon to bring up the launch view for more information

You can terminate the debug session in the usual ways, as well as terminating
the launch from the launch view.
END-OF-DOCUMENT

Page 20 of 20

	1Contents
	2XDebug Support User Guide
	2.1Determining the correct INI file to update
	2.2Required configuration of XDebug
	2.3Configuring XDebug support in PDT
	2.3.1Testing your setup.

	2.4Debugging using XDebug
	2.4.1Web Launch
	2.4.1.1Path Mapping
	2.4.1.2Debugging the web script
	2.4.1.3Disconnect

	2.5Breakpoint support
	2.5.1Conditional Breakpoint support
	2.5.1.1Hit counts
	2.5.1.2Expression evaluation

	2.6The debug views
	2.6.1Hover
	2.6.2Expression view

	2.7Known issues
	2.8Tips
	2.8.1Launch waiting for debug session

